Glow Logo
latest
  • Introduction to Glow
  • Getting Started
  • Variant Data Manipulation
  • Tertiary Analysis
    • Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer
    • Using Python Statistics Libraries
    • Genome-wide Association Study Regression Tests
    • GloWGR: Whole Genome Regression
  • Troubleshooting
  • Blog Posts
  • Additional Resources
  • Python API
Glow
  • Docs »
  • Tertiary Analysis
  • Edit on GitHub

Tertiary AnalysisΒΆ

Perform population-scale statistical analyses of genetic variants.

  • Parallelizing Command-Line Bioinformatics Tools With the Pipe Transformer
    • Usage
    • Integrating with bioinformatics tools
    • Options
    • Cleanup
  • Using Python Statistics Libraries
    • pandas example notebook
  • Genome-wide Association Study Regression Tests
    • Linear regression
    • Logistic regression
  • GloWGR: Whole Genome Regression
    • Performance
    • Overview
    • Data preparation
    • Stage 1. Genotype matrix blocking
    • Stage 2. Dimensionality reduction
    • Stage 3. Estimate phenotypic predictors
    • Proceed to GWAS
    • Troubleshooting
Next Previous

© Copyright 2019, Glow Authors Revision 796c98e6.

Built with Sphinx using a theme provided by Read the Docs.